Question: Consider the system (s_{1}) modelled as [ dot{x}=left[begin{array}{rr} 2 & 0 0 & -1 end{array}ight] x+left[begin{array}{l} 1 0 end{array}ight] u ] and system
Consider the system \(s_{1}\) modelled as
\[
\dot{x}=\left[\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}ight] x+\left[\begin{array}{l}
1 \\
0
\end{array}ight] u
\]
and system \(s_{2}\) modelled as
\[
\dot{z}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}ight] z+\left[\begin{array}{l}
1 \\
0
\end{array}ight] u
\]
What can be said about stabilizability of these systems?
(a) \(s_{1}\) and \(s_{2}\) both are stabilizable.
(b) only \(s_{1}\) is stabilizable.
(c) only \(s_{2}\) is stabilizable.
(d) neither \(s_{1}\) nor \(s_{2}\) is stabilizable.
Step by Step Solution
3.46 Rating (178 Votes )
There are 3 Steps involved in it
In Control Systems a system is said to be stabilizable if all its unstable modes are controllable Si... View full answer
Get step-by-step solutions from verified subject matter experts
