Prove the following conditions using an arbitrage argument. In your proof, show the initial positive cash flow

Question:

Prove the following conditions using an arbitrage argument. In your proof, show the initial positive cash flow when the condition is violated and prove that there are no liabilities at expiration:

a. \(C_{t}^{\mathrm{a}} \geq \operatorname{Max}\left[S_{\mathrm{t}}-X, 0\right]\)

b. \(C_{t}^{\mathrm{e}} \geq \operatorname{Max}\left[S_{\mathrm{t}}-P V(X), 0\right]\)

c. \(P_{t}^{\mathrm{a}} \geq \operatorname{Max}\left[X-S_{\mathrm{t}}, 0\right]\)

d. \(P_{t}^{e} \geq \operatorname{Max}\left[P V(X)-S_{\mathrm{t}}, 0\right]\)

e. \(C_{t}^{\mathrm{e}}\left(X_{1}\right)>C_{t}^{\mathrm{e}}\left(X_{2}\right)\)

f. \(P_{t}^{\mathrm{e}}\left(X_{2}\right)>P_{t}^{\mathrm{e}}\left(X_{1}\right)\)

g. \(C_{t}^{\mathrm{e}}\left(X_{1}\right)-C_{t}^{\mathrm{e}}\left(X_{2}\right)

h. \(P_{t}^{\mathrm{e}}\left(X_{2}\right)-P_{t}^{\mathrm{e}}\left(X_{1}\right)

i. \(C_{t}^{\mathrm{a}}\left(\mathrm{T}_{2}\right)>C_{t}^{\mathrm{a}}\left(T_{1}\right)\)

j. \(P_{t}^{\mathrm{a}}\left(\mathrm{T}_{2}\right)>P_{t}^{\mathrm{a}}\left(T_{1}\right)\)
k. \(P_{t}^{e}+S_{\mathrm{t}}=P_{t}^{e}+P V(X)\)
l. \(C_{t}^{\mathrm{e}}\left(X_{1}\right)-C_{t}^{\mathrm{e}}\left(X_{2}\right)+P_{t}^{\mathrm{e}}\left(X_{2}\right)-P_{t}^{\mathrm{e}}\left(X_{1}\right)=P V\left(X_{2}-X_{1}\right)\)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: