Question: Consider the Chamberlain (1985) fixed effects conditional logit model with a lagged dependent variable given in (11.16). Show that for (T=3, operatorname{Pr}left[A / y_{i l}+y_{i
Consider the Chamberlain (1985) fixed effects conditional logit model with a lagged dependent variable given in (11.16). Show that for \(T=3, \operatorname{Pr}\left[A / y_{i l}+y_{i 2}=1, \mu_{i}\right]\) and therefore \(\operatorname{Pr}\left[B / y_{i 1}+y_{i 2}=1, \mu_{i}\right]\) do not depend on \(\mu_{i}\). Note that \(A\) and \(B\) are defined in (11.17) and (11.18), respectively.
\[\begin{align*}
& \operatorname{Pr}\left[y_{i 0}=1 / \mu_{i}\right]=p_{0}\left(\mu_{i}\right) \\
& \operatorname{Pr}\left[y_{i t}=1 / \mu_{i}, y_{i 0}, y_{i 1}, \ldots, y_{i, t-1}\right]=\frac{e^{\gamma y_{i, t-1}+\mu_{i}}}{1+e^{\gamma y_{i, t-1}+\mu_{i}}} \quad t=1, \ldots, T \tag{11.16}
\end{align*}\]
\[\begin{align*}
A & =\left\{y_{i 0}=d_{0}, y_{i 1}=0, y_{i 2}=1, y_{i 3}=d_{3}\right\} \tag{11.17}\\
B & =\left\{y_{i 0}=d_{0}, y_{i 1}=1, y_{i 2}=0, y_{i 3}=d_{3}\right\} \tag{11.18}
\end{align*}\]
Step by Step Solution
3.39 Rating (155 Votes )
There are 3 Steps involved in it
To show that operatornamePrleftA yi 1yi 21 mui ight and operatornamePrleftB yi 1yi 21 mui ight do not depend on mui we need to demonstrate that these ... View full answer
Get step-by-step solutions from verified subject matter experts
