Let (B) be a BM and (M_{t}^{B}:=sup _{s leq t} B_{s}). Let (f(t, x, y)) be a

Question:

Let \(B\) be a BM and \(M_{t}^{B}:=\sup _{s \leq t} B_{s}\). Let \(f(t, x, y)\) be a \(C^{1,2,1}\left(\mathbb{R}^{+} \times \mathbb{R} \times \mathbb{R}^{+}\right)\)function such that

\[\begin{aligned}\frac{1}{2} f_{x x}+f_{t} & =0 \\f_{x}(t, 0, y)+f_{y}(t, 0, y) & =0 .\end{aligned}\]

Prove that \(f\left(t, M_{t}^{B}-B_{t}, M_{t}^{B}\right)\) is a local martingale. In particular, for \(h \in C^{1}\)

\[h\left(M_{t}^{B}\right)-h^{\prime}\left(M_{t}^{B}\right)\left(M_{t}^{B}-B_{t}\right)\]

is a local martingale. 

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Mathematical Methods For Financial Markets

ISBN: 9781447125242

1st Edition

Authors: Monique Jeanblanc, Marc Yor, Marc Chesney

Question Posted: