Question: (a) In Problem 48 let s(t) be the distance measured down the inclined plane from the highest point. Use ds/dt = v(t) and the solution

(a) In Problem 48 let s(t) be the distance measured down the inclined plane from the highest point. Use ds/dt = v(t) and the solution for each of the three cases in part (b) of Problem 48 to fi­nd the time that it takes the box to slide completely down the inclined plane. A root-finding application of a CAS may be useful here.

(b) In the case in which there is friction (μ ≠ 0) but no air resistance, explain why the box will not slide down the plane starting from rest from the highest point above ground when the inclination angle u satisfi­es tan θ ≤ μ.

(c) The box will slide downward on the plane when tan θ ≤ μ if it is given an initial velocity v(0) = v0 > 0. Suppose that μ = √3/4 and θ = 23°. Verify that tan θ ≤ μ. How far will the box slide down the plane if v0 = 1 ft/s?

(d) Using the values μ = √3/4 and θ = 23°, approximate the smallest initial velocity v0 that can be given to the box so that, starting at the highest point 50 ft above ground, it will slide completely down the inclined plane. Then ­find the corresponding time it takes to slide down the plane.

Step by Step Solution

3.52 Rating (172 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

a i If st is distance measured down the plane from the highest point then dsdt v Integrating dsdt 16... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (2 attachments)

PDF file Icon

1596_6062c74d02abd_676458.pdf

180 KBs PDF File

Word file Icon

1596_6062c74d02abd_676458.docx

120 KBs Word File

Students Have Also Explored These Related First Course Differential Equations Questions!