A hemispherical droplet of liquid water, lying on a flat surface, evaporates by molecular diffusion through still

Question:

A hemispherical droplet of liquid water, lying on a flat surface, evaporates by molecular diffusion through still air surrounding the droplet. The droplet initially has a radius R. As the liquid water slowly evaporates, the droplet shrinks slowly with time, but the flux of the water vapor is at a nominal steady state. The temperature of the droplet and the surrounding still air are kept constant. The air contains water vapor of fixed concentration at an infinitely long distance from the droplet’s surface. After drawing a picture of the physical process, select a coordinate system that will best describe this diffusion process, list at least five reasonable assumptions for the mass-transfer aspects of the water-evaporation process, and simplify the general differential equation for mass transfer in terms of the flux NA. Finally, specify the simplified differential form of Fick’s flux equation for water vapor (species A), and propose reasonable boundary conditions.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

Fundamentals Of Momentum Heat And Mass Transfer

ISBN: 9781118947463

6th Edition

Authors: James Welty, Gregory L. Rorrer, David G. Foster

Question Posted: