A jet ejector is a device without moving parts that can be used as a pump. As

Question:

A jet ejector is a device without moving parts that can be used as a pump. As shown in Fig. P11.6, on the upstream side are concentric tubes of diameters D and λD, where λ < 1. A liquid at a high velocity vjet in the inner tube entrains another liquid of the same density, giving it a velocity van(< vjet) in the annular region. Where the streams come into contact, the pressure in both is assumed to be Pjet. The device discharges to the atmosphere at a pressure P0 and velocity vout. The outlet is assumed to be just far enough downstream for the mixing to be complete and the plug-flow approximation to be valid again. Supposing that the flow is turbulent and that vjet, Pjet, the dimensions, and the fluid properties are known, it is desired to find van, vout, and the viscous loss Ev.

(a) Assuming that the plug-flow approximation is applicable separately to the jet and annular openings, show how the three velocities must be related.

(b) Supposing that the distance between the two planes shown as dashed lines is small enough to make the shear force on the wall negligible, relate van to vjet and Pjet and show that it is necessary that ΔP = P0 − Pjet > 0.

(c) Derive an expression for Ev.

(d) Calculate van, vout, and Ev for water with vjet = 5 m/s, λ = 0.3, D = 0.10 m, and Pjet = 0.99P0.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Question Posted: