Question: Find the function whose exact differential is d f = cos (x) sin (y) sin (z)dx +sin (x) cos (y) sin (z)dy +sin (x) sin

Find the function whose exact differential is

d f = cos (x) sin (y) sin (z)dx

        +sin (x) cos (y) sin (z)dy

       +sin (x) sin (y) cos (z)dz

and whose value at (0,0,0) is 0. Find the area of the circle of radius a given by ρ = a by doing the double integral

2π οα 1 dφ dρ.

2 1 d d.

Step by Step Solution

3.52 Rating (166 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

Since the differential is exact f x 1 y 1 z 1 f000 ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Physical Chemistry Questions!