Question: Magnification factor of a damped system Using the notation: (r=) frequency ratio (=frac{omega}{omega_{n}}) (omega=) forcing frequency (omega_{n}=) natural frequency (zeta=) damping ratio a. (frac{2 pi}{omega_{n}-omega})
Magnification factor of a damped systemÂ
Using the notation:
\(r=\) frequency ratio \(=\frac{\omega}{\omega_{n}}\)
\(\omega=\) forcing frequency \(\omega_{n}=\) natural frequency \(\zeta=\) damping ratio
a. \(\frac{2 \pi}{\omega_{n}-\omega}\)
b. \(\left[\frac{1+(2 \zeta r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \zeta r)^{2}}\right]^{1 / 2}\)
c. \(\frac{\omega_{n}}{\omega_{2}-\omega_{1}}\)
d. \(\frac{1}{1-r^{2}}\)
e. \(\omega_{n} \sqrt{1-\zeta^{2}}\)
f. \(\left[\frac{1}{\left(1-r^{2}\right)^{2}+(2 \zeta r)^{2}}\right]^{1 / 2}\)
Step by Step Solution
3.46 Rating (153 Votes )
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
