Question: We invert the given equation for (n) and write [ mu_{0}=frac{4 pi a hbar^{2} n}{m}left[1+frac{32}{3 pi^{1 / 2}}left(n a^{3}ight)^{1 / 2}+ldotsight] ] Substituting this into
We invert the given equation for \(n\) and write
\[
\mu_{0}=\frac{4 \pi a \hbar^{2} n}{m}\left[1+\frac{32}{3 \pi^{1 / 2}}\left(n a^{3}ight)^{1 / 2}+\ldotsight]
\]
Substituting this into the given expressions for \(E_{0}\) and \(P_{0}\), we get
\[
\begin{aligned}
\frac{E_{0}}{V} & =\frac{2 \pi a \hbar^{2} n^{2}}{m}\left[1+\frac{32}{3 \pi^{1 / 2}}\left(n a^{3}ight)^{1 / 2}+\ldotsight]^{2}\left[1-\frac{64}{5 \pi^{1 / 2}}\left(n a^{3}ight)^{1 / 2}+\ldotsight] \\
& =\frac{2 \pi a \hbar^{2} n^{2}}{m}\left[1+\frac{128}{15 \pi^{1 / 2}}\left(n a^{3}ight)^{1 / 2}+\ldotsight], \text { and } \\
P_{0} & =\frac{2 \pi a \hbar^{2} n^{2}}{m}\left[1+\frac{32}{3 \pi^{1 / 2}}\left(n a^{3}ight)^{1 / 2}+\ldotsight]^{2}\left[1-\frac{128}{15 \pi^{1 / 2}}\left(n a^{3}ight)^{1 / 2}+\ldotsight] \\
& =\frac{2 \pi a \hbar^{2} n^{2}}{m}\left[1+\frac{64}{5 \pi^{1 / 2}}\left(n a^{3}ight)^{1 / 2}+\ldotsight],
\end{aligned}
\]
in complete agreement with eqns. (11.3.16 and 17).
Step by Step Solution
3.47 Rating (157 Votes )
There are 3 Steps involved in it
We invert the given equation for n and write mu0frac4 pi a hbar2 ... View full answer
Get step-by-step solutions from verified subject matter experts
