Question: A simple massspring system, subject to light damping, is vibrating under the action of a periodic force Fcos pt. The equation of motion is where
A simple mass–spring system, subject to light damping, is vibrating under the action of a periodic force Fcos pt. The equation of motion is

where F and p are constants. Solve the differential equation for the displacement x(t). Show that one part of the solution tends to zero as t → ∞ and show that the amplitude of the steady state solution is
![]()
Hence show that resonance occurs when p = √2.
dx dt +2- + 4x = Fcospt d.x dt
Step by Step Solution
3.49 Rating (159 Votes )
There are 3 Steps involved in it
This is a secondorder linear constantcoefficient nonhomogeneous ordinary differential equation We ca... View full answer
Get step-by-step solutions from verified subject matter experts
