Question: Consider the function k(u) = |u|. a. Calculate 0 2 k(u) du exactly. Hint: dont use any integration methods to do this, just use
Consider the function k(u) = |u|.
a. Calculate ∫ 0
−2 k(u) du exactly. Hint: don’t use any integration methods to do this, just use some geometry and the formula for the area of a triangle.
b. Estimate ∫ 0
−2 k(u) du by using a right Riemann sum with four rectangles. Show that this right Riemann sum underestimates the actual area.
c. Estimate ∫ 0
−2 k(u) du by using a left Riemann sum with four rectangles. Show that this left Riemann sum overestimates the actual area.
d. Estimate ∫ 2 0 k(u) du by using a right Riemann sum with four rectangles. Show that this right Riemann sum overestimates the actual area.
e. Estimate ∫ 2 0 k(u) du by using a left Riemann sum with four rectangles. Show that this left Riemann sum underestimates the actual area.
f. Use a middle Riemann sum with 8 rectangles to estimate ∫ 2 −2 k(u) du. Compare your answer to the correct value of the integral. Can you explain your result?
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
