Question: 1.4.2 Assume that John will live forever. He plays a certain game each day. Let Ai be the event that he wins the game on
1.4.2 Assume that John will live forever. He plays a certain game each day. Let Ai be the event that he wins the game on the ith day.
(i) Let B be the event that John will win every game starting on January 1, 2015.
Label the following statements as true or false:
(a) B = liminf A,.
(b) B C liminf A,.
(c) B 2 limsup A,.
(d) B = limsup An.
(ii) Assume now that John starts playing on a Monday. Match the following events C1 through C g with events D1 through Dll:
C1 = John loses infinitely many games.
C2 = When John loses on a Thursday, he wins on the following Sunday.
C3 = John never wins on three consecutive days.
C, = John wins every Wednesday.
Cs = John wins on infinitely many Wednesdays.
c6 = John wins on a Wednesday.
C7 = John never wins on a weekend.
C, = John wins infinitely many games and loses infinitely many games.
C g = If John wins on some day, he never loses on the next day.
![D1 D2 j=0 j=0 [A7+4A7(j+1)]. A7j+3. == j=0 D3 D = n=0](https://dsd5zvtm8ll6.cloudfront.net/images/question_images/1741/8/4/1/44067d2642051d7d1741841440899.jpg)
![n [+6A(+1)] {[][]} Lk=n+1 Ak](https://dsd5zvtm8ll6.cloudfront.net/images/question_images/1741/8/4/1/44967d264299fa8e1741841450232.jpg)
D1 D2 j=0 j=0 [A7+4A7(j+1)]. A7j+3. == j=0 D3 D = n=0 n [+6A(+1)] {[][]} Lk=n+1 Ak
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
