If (vec{A}=A_{x} hat{i}+A_{y} hat{jmath}) and (vec{B}=B_{x} hat{i}+B_{y} hat{jmath}), show that (vec{A} cdot vec{B}=) (A_{x} B_{x}+A_{y} B_{y}). You

Question:

If \(\vec{A}=A_{x} \hat{i}+A_{y} \hat{\jmath}\) and \(\vec{B}=B_{x} \hat{i}+B_{y} \hat{\jmath}\), show that \(\vec{A} \cdot \vec{B}=\) \(A_{x} B_{x}+A_{y} B_{y}\). You may wish to use the fact that the scalar product satisfies the distributive property: \(\vec{a} \cdot(\vec{b}+\vec{c})=\) \(\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}\).)

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: