Question: Let (left(I_{t}, mathscr{F}_{t}ight)_{t geqslant 0}) be a continuous adapted process with values in ([0, infty)) and a.s. increasing sample paths. Set for (u geqslant 0)

Let \(\left(I_{t}, \mathscr{F}_{t}ight)_{t \geqslant 0}\) be a continuous adapted process with values in \([0, \infty)\) and a.s. increasing sample paths. Set for \(u \geqslant 0\)

\[\sigma_{u}(\omega):=\inf \left\{t \geqslant 0: I_{t}(\omega)>uight\} \quad \text { and } \quad \tau_{u}(\omega):=\inf \left\{t \geqslant 0: I_{t}(\omega) \geqslant uight\}\]

Show that

a) \(\sigma_{u} \geqslant t \Longleftrightarrow I_{t} \leqslant u\) and \(\tau_{u}>t \Longleftrightarrow I_{t}

b) \(\tau_{u}\) is an \(\mathscr{F}_{t}\) stopping time and \(\sigma_{u}\) is an \(\mathscr{F}_{t+}\) stopping time.

Step by Step Solution

3.31 Rating (148 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Probability And Stochastic Modeling Questions!