Question: 1 ) For $ mathbf { a } = a _ x mathbf { e } _ x + a _ y
For $mathbfaax mathbfexay mathbfeyaz mathbfezmathbfbbx mathbfexby mathbfeybz mathbfez$ find $mathbfcmathbfatimes mathbfb$ by three methods: termbyterm, resolving the determinant $mathbfcleftbeginarraylllmathbfex & mathbfey & mathbfez ax & ay & az bx & by & bzendarrayright$ and using the permutation symbol: $mathbfcmathbfatimes mathbfbsumisummsumnvarepsiloni m n am bn mathbfei ; beginaligned & varepsilonvarepsilonvarepsilon & varepsilonvarepsilonvarepsilonendaligned$ all others $$
For a tensor represented in Cartesian matrix form as $mathbfTleftbeginarraycccTx x & Tx y & Ty x & Ty y & & & Tz zendarrayright$
Find the double dot product $mathbfT: mathbfT$
For $mathbfvvx mathbfexvy mathbfeyvz mathbfez$ and $boldsymboltautaux xx y zmathbfex mathbfextaux yx y zmathbfex mathbfey ldotstauz zx y zmathbfez mathbfez$ find $mathbfvcdot
abla boldsymboltau$
D Cartesian coordinate system $leftmathbfexprimemathbfeyprimeright$ is oriented at angle $thetacirc$ with repect to the horizontalvertical system $leftmathbfexmathbfeyright$ We have position vectors $mathbfrmathbfexmathbfey$ and $mathbfrprimemathbfexprimemathbfeyprime$ Show that the two vectors are equal, $mathbfrprimemathbfr$; ie that they have the same magnitude and direction. There is a bit of roundoff error.
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
