Question: 1 . Force F 1 = 2 5 0 NF _ 1 = 2 5 0 , mathrm { N } F 1

1. Force F1=250NF_1=250\,\mathrm{N}F1=250N
Acts at a distance of 2m2\,\mathrm{m}2m from AAA.
Angle with the beam: 3030^\circ30.
2. Force F2=300NF_2=300\,\mathrm{N}F2=300N
Acts at a horizontal distance of 5m5\,\mathrm{m}5m from AAA (total beam length).
Angle with the vertical: 6060^\circ60
To calculate the resultant moment about point AAA, we need to evaluate the contribution of the moments generated by the forces F1F_1F1, F2F_2F2, and F3F_3F3.
Key Steps:
Resolve forces into components (if necessary).
Determine perpendicular distances from point AAA to the line of action of each force.
Calculate moments about point AAA using M=FdM = F \cdot dM=Fd, where ddd is the perpendicular distance.
Assign signs: Use the right-hand rule to assign positive or negative signs to moments (typically counterclockwise moments are positive).
1. Force F1=250NF_1=250\,\mathrm{N}F1=250N
Acts at a distance of 2m2\,\mathrm{m}2m from AAA.
Angle with the beam: 3030^\circ30.
Moment arm (perpendicular distance): d1=2sin(30)=1md_1=2\sin(30^\circ)=1\,\mathrm{m}d1=2sin(30)=1m.
Moment about AAA: M1=F1d1=2501=250Nm.M_1= F_1\cdot d_1=250\cdot 1=250\,\mathrm{Nm}.M1=F1d1=2501=250Nm. Direction: Counterclockwise (+)(+)(+).
2. Force F2=300NF_2=300\,\mathrm{N}F2=300N
Acts at a horizontal distance of 5m5\,\mathrm{m}5m from AAA (total beam length).
Angle with the vertical: 6060^\circ60.
Moment arm: d2=5cos(60)=2.5md_2=5\cos(60^\circ)=2.5\,\mathrm{m}d2=5cos(60)=2.5m.
Moment about AAA: M2=F2d2=3002.5=750Nm.M_2= F_2\cdot d_2=300\cdot 2.5=750\,\mathrm{Nm}.M2=F2d2=3002.5=750Nm. Direction: Counterclockwise (+)(+)(+).
3. Force F3=500NF_3=500\,\mathrm{N}F3=500N
Acts at an inclined distance. Resolve into horizontal and vertical components:
Vertical component: F3y=50045=400NF_{3y}=500\cdot \frac{4}{5}=400\,\mathrm{N}F3y=50054=400N.Horizontal component: F3x=50035=300NF_{3x}=500\cdot \frac{3}{5}=300\,\mathrm{N}F3x=50053=300N.
Perpendicular distances from AAA:
For F3yF_{3y}F3y: Horizontal distance d3y=5md_{3y}=5\,\mathrm{m}d3y=5m.For F3xF_{3x}F3x: Vertical distance d3x=4md_{3x}=4\,\mathrm{m}d3x=4m.
determine the resultant moment about point A

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Physics Questions!