Question: # 1 . Histogram for Ageyears plt . hist ( data [ ' Ageyears ' ] , bins = 1 0 , edgecolor = 'black'

# 1. Histogram for Ageyears
plt.hist(data['Ageyears'], bins=10, edgecolor='black')
plt.xlabel('Age in Years')
plt.ylabel('Frequency')
plt.title('Distribution of Ages')
plt.show()
# 2. Boxplot for Travel_Time by Region
sns.boxplot(x='Region', y='Travel_Time', data=data)
plt.xlabel('State')
plt.ylabel('Travel Time to School (Minutes)')
plt.title('Travel Time by State')
plt.show()
# 3. Pie Chart for Region
region_counts = data['Region'].value_counts()
plt.pie(region_counts, labels=region_counts.index, autopct='%1.1f%%', startangle=90)
plt.title('Proportion of Responses by State')
plt.show()
# 4. Bar Chart for Vegetarian
vegetarian_counts = data['Vegetarian'].value_counts()
plt.bar(vegetarian_counts.index.astype(str), vegetarian_counts)
plt.xlabel('Vegetarian')
plt.ylabel('Count')
plt.title('Count of Vegetarians vs. Non-Vegetarians')
plt.show()
Final Notes
Data Preparation: Make sure your dataset (`census_data.csv`) is properly formatted and contains the required variables: `Ageyears`,`Travel_Time`,`Region`, and `Vegetarian`.
Library Installation: If you need to install the libraries, you can use pip: ``` pip install pandas matplotlib seaborn ```
By running this code, you will generate the desired histograms, boxplots, pie charts, and bar charts for your data analysis.# 1. Histogram for Ageyears
plt.hist(data['Ageyears'], bins=10, edgecolor='black')
plt.xlabel('Age in Years')
plt.ylabel('Frequency')
plt.title('Distribution of Ages')
plt.show()
# 2. Boxplot for Travel_Time by Region
sns.boxplot(x='Region', y='Travel_Time', data=data)
plt.xlabel('State')
plt.ylabel('Travel Time to School (Minutes)')
plt.title('Travel Time by State')
plt.show()
# 3. Pie Chart for Region
region_counts = data['Region'].value_counts()
plt.pie(region_counts, labels=region_counts.index, autopct='%1.1f%%', startangle=90)
plt.title('Proportion of Responses by State')
plt.show()
# 4. Bar Chart for Vegetarian
vegetarian_counts = data['Vegetarian'].value_counts()
plt.bar(vegetarian_counts.index.astype(str), vegetarian_counts)
plt.xlabel('Vegetarian')
plt.ylabel('Count')
plt.title('Count of Vegetarians vs. Non-Vegetarians')
plt.show()
Final Notes
Data Preparation: Make sure your dataset (`census_data.csv`) is properly formatted and contains the required variables: `Ageyears`,`Travel_Time`,`Region`, and `Vegetarian`.
Library Installation: If you need to install the libraries, you can use pip: ``` pip install pandas matplotlib seaborn ```
By running this code, you will generate the desired histograms, boxplots, pie charts, and bar charts for your data analysis.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!