Question: /*16. Does the constant error variance assumption hold? Residuals vs Predicted Values The UNIVARIATE Procedure Variable: ToddlerWtGain Moments N 122 Sum Weights 122 Mean 16.6467213

/*16. Does the constant error variance assumption hold?

Residuals vs Predicted Values

The UNIVARIATE Procedure

Variable: ToddlerWtGain

Moments
N122Sum Weights122
Mean16.6467213Sum Observations2030.9
Std Deviation3.44170471Variance11.8453313
Skewness-2.8159955Kurtosis21.247275
Uncorrected SS35241.1114Corrected SS1433.28509
Coeff Variation20.6749704Std Error Mean0.3115973

Basic Statistical Measures
LocationVariability
Mean16.64672Std Deviation3.44170
Median16.68500Variance11.84533
Mode15.12000Range31.91000
Interquartile Range3.28000

Note: The mode displayed is the smallest of 4 modes with a count of 2.

TestsforLocation:Mu0=0
TestStatisticp Value
Student's tt53.42383Pr > |t|<.0001>
SignM60Pr >= |M|<.0001>
Signed RankS3750.5Pr >= |S|<.0001>

Quantiles(Definition5)
LevelQuantile
100% Max23.810
99%23.590
95%22.190
90%20.010
75% Q318.430
50% Median16.685
25% Q115.150
10%13.700
5%13.070
1%10.660
0% Min-8.100

Extreme Observations
LowestHighest
ValueObsValueObs
-8.1010222.5885
10.661122.7526
11.838722.9959
12.596523.5960
12.619923.81112

Missing Values
Missing ValueCountPercent Of
All ObsMissing Obs
.1913.48100.00

Residuals vs Predicted Values

The UNIVARIATE Procedure

Residuals vs Predicted Values

The UNIVARIATE Procedure

Fitted Normal Distribution for ToddlerWtGain

Parameters for Normal Distribution
ParameterSymbolEstimate
MeanMu16.64672
Std DevSigma3.441705

Goodness-of-Fit Tests for Normal Distribution
TestStatisticp Value
Kolmogorov-SmirnovD0.10498252Pr > D
Cramer-von MisesW-Sq0.36108444Pr > W-Sq
Anderson-DarlingA-Sq2.70319046Pr > A-Sq

Quantiles for Normal Distribution
PercentQuantile
ObservedEstimated
1.010.66008.64012
5.013.070010.98562
10.013.700012.23600
25.015.150014.32533
50.016.685016.64672
75.018.430018.96812
90.020.010021.05744
95.022.190022.30782
99.023.590024.65332

Residuals vs Predicted Values

The UNIVARIATE Procedure

Residuals vs Predicted Values

The UNIVARIATE Procedure

Variable: residual

Missing Values
Missing ValueCountPercent Of
All ObsMissing Obs
.2100.00100.00

/*16. Does the constant error variance assumption hold?Residuals vs Predicted Values TheUNIVARIATE ProcedureVariable: ToddlerWtGainMomentsN122Sum Weights122Mean16.6467213Sum Observations2030.9Std Deviation3.44170471Variance11.8453313Skewness-2.8159955Kurtosis21.247275Uncorrected SS35241.1114Corrected SS1433.28509Coeff Variation20.6749704Std Error Mean0.3115973 BasicStatistical MeasuresLocationVariabilityMean16.64672Std Deviation3.44170Median16.68500Variance11.84533Mode15.12000Range31.91000Interquartile Range3.28000 Note: The mode displayed is the smallest of4 modes with a count of 2. TestsforLocation:Mu0=0TestStatisticp ValueStudent's tt53.42383Pr > |t|SignM60Pr

\f\f\f\f

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!