Question: 1c. Please mathematically show how the continuous compounding formula can be derived in terms of the discrete compounding formula. 1d. Please discuss how the continuous
1c. Please mathematically show how the continuous compounding formula can be derived in terms of the discrete compounding formula.
1d. Please discuss how the continuous compounding formula can be used to estimate the growth rate.
1e. If we have the variance-covariance matrix for time, EPS, DPS, PPS, nature log EPS, nature log DPS, and nature log PPS as follows. Please calculate the growth rate of EPS, DPS, and PPS in terms of a continuous compounding regression model.

\begin{tabular}{lrrrrrrr} \hline & \multicolumn{1}{c}{ Time } & EPS & DPS & \multicolumn{1}{c}{ PPS } & \multicolumn{1}{c}{lnEPS} & lnDPS \\ \hline Time & 40.2500 & & & & & \\ EPS & 5.0536 & 1.9401 & & & & \\ DPS & 5.3516 & 0.6991 & 0.7708 & & & \\ PPS & 88.9053 & 7.5722 & 16.0059 & 624.3639 & & \\ InEPS & 0.8821 & 0.6929 & 0.1135 & (1.2426) & 0.2914 & \\ InDPS & 3.0067 & 0.4349 & 0.4284 & 8.1082 & 0.0859 & 0.2479 \\ InPPS & 0.9842 & 0.1069 & 0.1820 & 7.1647 & (0.0040) & 0.0938 & 0.0835 \\ \hline \end{tabular} \begin{tabular}{lrrrrrrr} \hline & \multicolumn{1}{c}{ Time } & EPS & DPS & \multicolumn{1}{c}{ PPS } & \multicolumn{1}{c}{lnEPS} & lnDPS \\ \hline Time & 40.2500 & & & & & \\ EPS & 5.0536 & 1.9401 & & & & \\ DPS & 5.3516 & 0.6991 & 0.7708 & & & \\ PPS & 88.9053 & 7.5722 & 16.0059 & 624.3639 & & \\ InEPS & 0.8821 & 0.6929 & 0.1135 & (1.2426) & 0.2914 & \\ InDPS & 3.0067 & 0.4349 & 0.4284 & 8.1082 & 0.0859 & 0.2479 \\ InPPS & 0.9842 & 0.1069 & 0.1820 & 7.1647 & (0.0040) & 0.0938 & 0.0835 \\ \hline \end{tabular}
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
