Question: 4. Gradient Computation [5 points] Implement the gradient computations for logistic regression. : def gradient_update(theta, x, y): The gradient update for logistic regression ###############################
![4. Gradient Computation [5 points] Implement the gradient computations for logistic](https://dsd5zvtm8ll6.cloudfront.net/si.experts.images/questions/2024/09/66f3289d33061_67666f3289cbe125.jpg)
4. Gradient Computation [5 points] Implement the gradient computations for logistic regression. : def gradient_update(theta, x, y): "" The gradient update for logistic regression""" ############################### # Compute the gradient update # ############################### grad = None ### YOUR CODE HERE ### END YOUR CODE return grad # Check your gradient computation implementation t_X = np.array([[1, 2, 3], [-1, -2, -3]]) t_y = np.array([0, 1]) t_thetal = np.array([-10, 10, 0]) t_theta2 = np.array([10, -10, 0]) t_gi = gradient_update(t_thetai, t_x, ty) t_g2 = gradient_update(t_theta2, t_x, ty) print (t_gi) print (t_g2) None None
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
