Question: 4 Integrate da using u-substitution: (25 + 9)2 U = du = dx Substitution gives du Integration yields The final answer is2e2x Integrate da using

 4 Integrate da using u-substitution: (25 + 9)2 U = du= dx Substitution gives du Integration yields The final answer is2e2x Integrateda using u-substitution: (e2x _ 8)6 U = du dx Substitution givesdu Integration yields The final answer isIntegrate /25 (3x6 + 4) dausing u- U = du = dx Substitution gives du Integration yieldsThe final answer is\fIntegrate da using u-substitution: x2 + 2x u == dx Substitution gives du Integration yields The final answer isIntegrate 3V9 + r dr using u-substitution: U = du = dr Substitutiongives du Integration yields The final answer isIntegrate /cot(0)In(3 sin(0) ) de
using u-substitution du = dx Substitution gives du Integration yields The finalanswer is(In(z) ) 6 Integrate dz using u-substitution: Z du = Substitutiongives du Integration yields The final answer is- sin(y) Integrate dy usingu-substitution: cos(y) + 3 du = dx Substitution gives du Integration yieldsThe final answer isimage text in transcribedimage text in transcribedimage text in transcribedimage text in transcribed

4 Integrate da using u-substitution: (25 + 9)2 U = du = dx Substitution gives du Integration yields The final answer is2e2x Integrate da using u-substitution: (e2x _ 8)6 U = du dx Substitution gives du Integration yields The final answer isIntegrate /25 (3x6 + 4) da using u- U = du = dx Substitution gives du Integration yields The final answer is\fIntegrate da using u-substitution: x2 + 2x u = = dx Substitution gives du Integration yields The final answer isIntegrate 3 V9 + r dr using u-substitution: U = du = dr Substitution gives du Integration yields The final answer isIntegrate /cot(0)In(3 sin(0) ) de using u-substitution du = dx Substitution gives du Integration yields The final answer is(In(z) ) 6 Integrate dz using u-substitution: Z du = Substitution gives du Integration yields The final answer is- sin(y) Integrate dy using u-substitution: cos(y) + 3 du = dx Substitution gives du Integration yields The final answer is

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!