Question: # 6.3 scatter plot and correlation in log scale plt.figure() plt.scatter(np.log(data[me].flatten()), np.log(data[mu].flatten())) plt.xticks([0,1,2,3],[ '10^0', '10^1', '10^2', '10^3']) plt.yticks([0,1,2,3],[ '10^0', '10^1', '10^2', '10^3']) plt.xlabel('Monthly cases of
# 6.3 scatter plot and correlation in log scale plt.figure() plt.scatter(np.log(data[me].flatten()), np.log(data[mu].flatten())) plt.xticks([0,1,2,3],[ '10^0', '10^1', '10^2', '10^3']) plt.yticks([0,1,2,3],[ '10^0', '10^1', '10^2', '10^3']) plt.xlabel('Monthly cases of ' + diseases[me]) plt.ylabel('Monthly cases of ' + diseases[mu]) plt.title('Fig 6.3: Monthly cases of %s vs %s' %(diseases[me], diseases[mu])) # compute and display Pearson correlation coefficient
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
