Question: a lim n 1 n [ ( 1 n ) 2 + ( 2 n ) 2 + cdots + ( n n ) 2

alimn1n[(1n)2+(2n)2+cdots+(nn)2].
Proof Let f(x)=x2. Let Pbe the partition of0,1 into n equal parts: xi-xi-1=1nUP(f)=1nsup[xi-1,xi]f(x)(xi-xi-1)
=1nxi2(xi-xi-1)
=1n(in)21n( for xi=in)
=1n1n(in)2
=1n((1n)2+(2n)2+cdots+(nn)2)f(x)=x2nlongrightarrow01x2dxlimnlongrightarrow1n((1n)2+(2n)2+cdots+(nn)2)=01x2dx=x33|01=13-03=13x2, where xi-xi-1=1n. Consider
UP(f)=1nsup[xi-1,xi]f(x)(xi-xi-1)
=1nxi2(xi-xi-1)
=1n(in)21n( for xi=in)
=1n1n(in)2
=1n((1n)2+(2n)2+cdots+(nn)2)
Since f(x)=x2is continuous, itisR. I., and so the limitin(4)as nlongrightarrow equals
01x2dx. Thus
limnlongrightarrow1n((1n)2+(2n)2+cdots+(nn)2)=01x2dx=x33|01=13-03=130=x0
x2, where xi-xi-1=1n. Consider
UP(f)=1nsup[xi-1,xi]f(x)(xi-xi-1)
=1nxi2(xi-xi-1)
=1n(in)21n( for xi=in)
=1n1n(in)2
=1n((1n)2+(2n)2+cdots+(nn)2)
Since f(x)=x2is continuous, itisR. I., and so the limitin(4)as nlongrightarrow equals
01x2dx. Thus
limnlongrightarrow1n((1n)2+(2n)2+cdots+(nn)2)=01x2dx=x33|01=13-03=13
a lim n 1 n [ ( 1 n ) 2 + ( 2 n ) 2 + cdots + ( n

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!