Question: % (a) solve some trajectories % timeStepperPendulum function % to be updated at bottom of script T = 2; % total time Nt = 1000;

% (a) solve some trajectories
% timeStepperPendulum function
% to be updated at bottom of script
T = 2; % total time
Nt = 1000; % number of timesteps
dt = T/Nt;
% Hamiltonian
Ham = @(x,y) %%% ENTER THE HAMILTONIAN
% test values for the Hamiltonian
Ham_test = Ham([0,pi/6,pi/3],[1,2,3]);
% initial condition
x0 = -pi/3; y0 = 3;
% Forward Euler trajectory
[xFE, yFE] = trajectory(T,Nt,x0,y0,'FE');
% Heun trajectory
[xH, yH] = trajectory(T,Nt,x0,y0,'Heun');
% plot trajectories and superimpose the Hamiltonian
%%% ENTER YOUR PLOTTING INSTRUCTIONS HERE AND ONCE
%%% YOU ARE READY TO SUBMIT THIS PLOT, SET THE
%%% bool1 VARIABLE TO 1
bool1 = 0;
1. (Nonlinear pendulum) Consider the nonlinear pendulum system (') = (_sin a). (a) Implement forward Euler and Heun's method, and draw trajectories emanating from different initial conditions. Superimpose with a contour plot (help contour) of the Hamiltonian function H(x,y) - 3y2 + cos x. (note: the true trajectories satisfy H(x(t), y(t)) = const.] = 1. (Nonlinear pendulum) Consider the nonlinear pendulum system (') = (_sin a). (a) Implement forward Euler and Heun's method, and draw trajectories emanating from different initial conditions. Superimpose with a contour plot (help contour) of the Hamiltonian function H(x,y) - 3y2 + cos x. (note: the true trajectories satisfy H(x(t), y(t)) = const.] =
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
