Question: (a) The zero vector is orthogonal to all subspaces.(b) If one of the eigenvalues is zero, the matrix is singular.(c) Suppose the eigenvalues are 1,


(a) The zero vector is orthogonal to all subspaces.(b) If one of the eigenvalues is zero, the matrix is singular.(c) Suppose the eigenvalues are 1, 2, 3, the matrix is NOT invertible.(d) Cramer's rule can be applied to solve Ax=b when A is singular.(e) If two eigenvalues are the same, the matrix is NOT be diagonalizable.true or false?
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
