Question: An oracle typically is treated as a black box subroutine. Measuring algorithms in how many oracle calls are used in the worst case is often

An oracle typically is treated as a black box subroutine. Measuring algorithms in how
many oracle calls are used in the worst case is often a powerful theoretical framework for
optimization problems. For the purposes of this exercise, a feasibility oracle (A, b) takes
as input A in R
m\times n
, b in R
m for some integers m and n, and outputs
i. If Ax <= b is infeasible, outputs the pair (A, b) is infeasible;
ii. Otherwise, outputs a point x such that Ax <= b.
Consider the following linear program
maximize: c
T x
subject to: Bx <= d.
Furthermore, suppose the linear program is bounded and feasible, and let P be the set of
feasible points and let OP T be the optimal value. Suppose you know 0<= OP T <= M. For
all \epsi >0, show with at most log2
(M/\epsi )+1 calls to , one can find a feasible solution
z in P such that |c
T z OP T|<=\epsi

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!