Question: Apply the algorithm below to approximate: function [Q,fcount] = quadtx(F,a,b,tol,varargin) %QUADTX Evaluate definite integral numerically. % Q = QUADTX(F,A,B) approximates the integral of F(x) %
Apply the algorithm below to approximate: ![Apply the algorithm below to approximate: function [Q,fcount] = quadtx(F,a,b,tol,varargin) %QUADTX Evaluate](https://dsd5zvtm8ll6.cloudfront.net/si.experts.images/questions/2024/09/66f5265a2bd5c_16966f52659d4901.jpg)
function [Q,fcount] = quadtx(F,a,b,tol,varargin) %QUADTX Evaluate definite integral numerically. % Q = QUADTX(F,A,B) approximates the integral of F(x) % from A to B to within a tolerance of 1.e-6. % % Q = QUADTX(F,A,B,tol) uses tol instead of 1.e-6. % % The first argument, F, is a function handle or % an anonymous function that defines F(x). % % Arguments beyond the first four, % Q = QUADTX(F,a,b,tol,p1,p2,...), are passed on to the % integrand, F(x,p1,p2,..). % % [Q,fcount] = QUADTX(F,...) also counts the number of % evaluations of F(x). % % See also QUAD, QUADL, DBLQUAD, QUADGUI. % Default tolerance if nargin
function [Q,fcount] = quadtxstep(F,a,b,tol,fa,fc,fb,varargin) % Recursive subfunction used by quadtx. h = b - a; c = (a + b)/2; fd = F((a+c)/2,varargin{:}); fe = F((c+b)/2,varargin{:}); Q1 = h/6 * (fa + 4*fc + fb); Q2 = h/12 * (fa + 4*fd + 2*fc + 4*fe + fb); if abs(Q2 - Q1) .2(1 - e20)) da .2(1 - e20)) da
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
