Question: Assume that random guesses are made for 6 multiple-choice questions on a test with 5 choices for each question, so that there are n =

 Assume that random guesses are made for 6 multiple-choice questions on

a test with 5 choices for each question, so that there are

Assume that random guesses are made for 6 multiple-choice questions on a test with 5 choices for each question, so that there are n = 6 trials, each with probability of success (correct) given by p=0.20. Find the probability of no correct answers. Click on the icon to view the binomial probability table. The probability of no correct answers is Reference (Round to three decimal places as needed.) Binomial Probabilities 95 .99 N D 50 60 70 80 10 20 30 40 040 092 0+ g 2 8 n X 01 05 250 160 090 490 360 020 NO 902 810 640 2 ge 320 320 420 480 500 480 420 180 490 640 980 020 095 902 NO 250 360 0+ 002 010 040 090 160 008 0+ O 125 .064 027 001 970 857 729 512 343 216 375 288 189 .096 027 007 WN - 029 135 243 384 441 432 384 243 135 029 288 375 432 441 970 0+ 007 096 189 .216 512 867 125 343 .729 064 OUN - 001 008 027 TO 0+ .026 .008 002 0+ 0+ 0+ 656 130 .062 961 815 410 240 .076 026 .004 0+ 154 292 346 250 039 410 412 154 049 014 001 266 346 .346 .014 049 154 265 375 292 171 039 .001 250 346 412 $10 026 076 154 0+ 004 410 656 815 961 240 0+ .002 008 .026 062 .130 0+ 0+ of 168 078 031 .010 .002 0+ 774 o+ 951 590 328 .156 .077 028 006 048 204 328 410 360 259 0+ 051 021 205 309 346 312 .230 132 008 001 073 205 .073 021 001 AUN 001 309 008 061 132 230 ,312 .346 018 04 001 410 328 204 0+ 006 028 077 156 259 360 951 0+ 010 031 .078 168 328 590 774 002 0+ 0+ 004 001 0+ 047 016 941 735 531 262 118 602 203 187 037 010 057 232 View an example Get more help

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!