Question: Can someone help me with this math problem? I have identified that this problem is related rates. An inverted conical water tank with a height

 Can someone help me with this math problem? I have identified

Can someone help me with this math problem? I have identified that this problem is related rates. An inverted conical water tank with a height of 12ft and a radius of 6ft is drained through a hole in the vertex at a rate of 2ft^3/s.Volume of cone: v=(1/3)(pi)(r^2)(h)What is the rate of change of the water depth when the water is 3ft? Use exact answer. ??I have identified that 2ft^3/s is dv/dt and I think it's saying I need to find dh/dt. Is this on the right track and if I'm not can someone help me solve this all together ??

that this problem is related rates. An inverted conical water tank with

10. An inverted conical water tank with a height of 12ft and radius oft is drained through a hole in the vertex at a rate of 2 fts /s. (volume of a cone: v = (7)r2h) du de = 203 + 2 4 dy 6 ft F Z y dy 12 ft dy 2 find Outflow 2 ft /s ah/ de h= 3 (a) What is the rate of change of the water depth when the water is 3ft? Use EXACT

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!