Question: Code for k - NN library ( class ) library ( readxl ) library ( pROC ) library ( ROCR ) data < - read
Code for kNN
libraryclass
libraryreadxl
librarypROC
libraryROCR
data readexcelC:UsershemunDownloadsRidingMowerskNNxlsx
printheaddata
printtabledata$Validation
trainingdata datadata$Validation
validationdata datadata$Validation
printnrowtrainingdata
printnrowvalidationdata
trainfeatures scaletrainingdata cIncome "Lot Size"
validationfeatures scalevalidationdata cIncome "Lot Size"
trainlabels trainingdata$Ownership
validationlabels validationdata$Ownership
printheadtrainfeatures
printtabletrainlabels
k
predictions knntrain trainfeatures,
test validationfeatures,
cl trainlabels,
k k
accuracy meanpredictions validationlabels
printpasteAccuracy: roundaccuracy
results data.frame
Actual validationlabels,
Predicted predictions,
Income validationdata$Income,
Lot Size validationdata$Lot Size
printKNN Classification Results:"
printresults
printpasteAccuracy: roundaccuracy
plotdata$Income, data$LotSize,
col ifelsedata$Ownership "owner", "blue", "red"
pch ifelsedata$Validation
xlab "Income thousands
ylab "Lot Size thousands sq ft
main "RidingMowers KNN Classification"
legendtopleft
legend cOwner "Nonowner", "Training", "Validation"
col cblue "red", "black", "black"
pch c
validationlabelsnumeric asnumericvalidationlabels"owner"
predictionsnumeric asnumericpredictions"owner"
roccurveknn rocvalidationlabels, asnumericpredictions
plotroccurveknn main "ROC Curve for kNN col "blue"
predknn predictionasnumericpredictions
asnumericvalidationlabelsnumeric
perfknn performancepredknn "lift", rpp
plotperfknn main "Lift Curve for kNN col "red"
actual asnumericvalidationlabels "owner"
predictednumericknn asnumericpredictions "owner"
raseknn sqrtmeanactual predictednumericknn
rsqknn sumactual predictednumericknn sumactual meanactual
printpasteRASE for kNN: raseknn
printpasteRsquared for kNN: rsqknn
predictownership functionincomelot size
newdata scalematrixcincome lot size ncol
center attrtrainfeatures, "scaled:center"
scale attrtrainfeatures, "scaled:scale"
prediction knntrain trainfeatures,
test newdata,
cl trainlabels,
k k
returnprediction
newcustomerprediction predictownershipincome lot size
printpastePredicted ownership status:", newcustomerprediction
code for logistic regression
librarycaret
librarypROC
libraryROCR
libraryreadxl
data readexcelC:UsershemunDownloadsRidingMowerskNNxlsx
data$Ownership factordata$Ownership, levels cnonowner", "owner"
set.seed
splitindex createDataPartitiondata$Ownership, p list FALSE
train datasplitindex,
test datasplitindex,
logmodel glmOwnership ~ Income Lot Size, data train, family "binomial"
logpred predictlogmodel, test, type "response"
logpredclass factorifelselogpred "owner", "nonowner"
levels cnonowner", "owner"
confmatlog confusionMatrixlogpredclass, test$Ownership
printconfmatlog
roccurvelog roctest$Ownership, asnumericlogpred
plotroccurvelog main "ROC Curve for Logistic Regression", col "blue"
predlog predictionlogpred, test$Ownership
perflog performancepredlog "lift", rpp
plotperflog main "Lift Curve for Logistic Regression", col "red"
actual asnumerictest$Ownership "owner"
predicted asnumericlogpredclass "owner"
raselog sqrtmeanactual predicted
rsqlog sumactual predicted sumactual meanactual
printpasteRASE for Logistic Regression:", raselog
printpasteRsquared for Logistic Regression:", rsqlog
Give me a code for ensembles with kNN and logistic regression
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
