Question: Combine the classes of the response variable into two meta classes so that it is NoMore versus others. Publishers want to ID those who might
Combine the classes of the response variable into two meta classes so that it is NoMore versus others. Publishers want to ID those who might stop using the book to take proactive action. 1. Split the data into training (60%) and validation (40%) datasets. Use the random seed 202. 2. Run Logistic Regression, KNN and Neural Nets models. Report the validation confusion matrix for each of the three models. 3. Compare the error rates of validation sets for the three individual methods. 4. Produce gains and decile lift charts on the validation set using your models and compare their performance..
| University | Enrollment | AvgSAT | PctTenure | PCLabs | PctOwnPC | Tuition | Status |
| 1 | 17455 | 1068 | 0.793 | 154 | 0.465 | 17400 | Never |
| 2 | 14445 | 1173 | 0.846 | 162 | 0.506 | 16300 | Never |
| 3 | 14773 | 1122 | 0.809 | 158 | 0.68 | 15600 | Never |
| 4 | 16138 | 992 | 0.634 | 133 | 0.542 | 10100 | Never |
| 5 | 16717 | 1141 | 0.807 | 123 | 0.644 | 16500 | Never |
| 6 | 18002 | 1109 | 0.845 | 127 | 0.509 | 10300 | Never |
| 7 | 14030 | 1180 | 0.852 | 146 | 0.565 | 14200 | Never |
| 8 | 17459 | 1146 | 0.79 | 144 | 0.576 | 14100 | Never |
| 9 | 13931 | 1127 | 0.788 | 126 | 0.6 | 13300 | Never |
| 10 | 13046 | 984 | 0.718 | 143 | 0.417 | 17700 | Never |
| 11 | 17171 | 1121 | 0.768 | 148 | 0.491 | 13200 | Never |
| 12 | 14944 | 1230 | 0.807 | 161 | 0.7 | 13200 | Never |
| 13 | 13300 | 1194 | 0.836 | 173 | 0.53 | 19700 | Never |
| 14 | 14399 | 1178 | 0.837 | 160 | 0.66 | 14900 | Never |
| 15 | 12743 | 1035 | 0.88 | 116 | 0.47 | 16300 | Never |
| 16 | 14170 | 1215 | 0.792 | 175 | 0.481 | 14700 | Never |
| 17 | 12570 | 1283 | 0.9 | 147 | 0.65 | 19800 | Never |
| 18 | 14214 | 1061 | 0.9 | 120 | 0.523 | 13100 | Never |
| 19 | 14551 | 1338 | 0.852 | 170 | 0.563 | 20600 | Never |
| 20 | 13745 | 1097 | 0.801 | 130 | 0.516 | 12900 | Never |
| 21 | 14254 | 1145 | 0.748 | 131 | 0.529 | 14900 | Never |
| 22 | 17633 | 973 | 0.809 | 140 | 0.435 | 12800 | Never |
| 23 | 13873 | 1074 | 0.824 | 160 | 0.505 | 16000 | Never |
| 24 | 17190 | 1042 | 0.764 | 156 | 0.518 | 16000 | Never |
| 25 | 13769 | 1216 | 0.805 | 159 | 0.633 | 17000 | Never |
| 26 | 12812 | 1206 | 0.762 | 137 | 0.518 | 14600 | Never |
| 27 | 15261 | 1228 | 0.793 | 175 | 0.539 | 17300 | Never |
| 28 | 14724 | 1035 | 0.757 | 166 | 0.584 | 14500 | Never |
| 29 | 13071 | 1091 | 0.809 | 108 | 0.478 | 13700 | Never |
| 30 | 14238 | 1072 | 0.81 | 188 | 0.595 | 17200 | Never |
| 31 | 12429 | 1222 | 0.907 | 186 | 0.545 | 17700 | Never |
| 32 | 14002 | 1114 | 0.765 | 134 | 0.615 | 18300 | Never |
| 33 | 12216 | 1170 | 0.825 | 158 | 0.58 | 14200 | Never |
| 34 | 17597 | 989 | 0.76 | 139 | 0.245 | 7400 | Never |
| 35 | 18677 | 1235 | 0.74 | 170 | 0.612 | 11800 | Never |
| 36 | 14965 | 1250 | 0.866 | 140 | 0.64 | 13800 | Never |
| 37 | 15416 | 1098 | 0.771 | 179 | 0.494 | 15700 | Never |
| 38 | 12783 | 1212 | 0.748 | 105 | 0.605 | 11700 | Never |
| 39 | 15072 | 1225 | 0.929 | 151 | 0.638 | 17400 | Never |
| 40 | 14177 | 980 | 0.791 | 128 | 0.577 | 14000 | Never |
| 41 | 16326 | 1025 | 0.673 | 129 | 0.414 | 11800 | NoMore |
| 42 | 15580 | 939 | 0.612 | 78 | 0.436 | 8800 | NoMore |
| 43 | 11617 | 1023 | 0.681 | 122 | 0.583 | 16800 | NoMore |
| 44 | 18085 | 850 | 0.58 | 164 | 0.351 | 9100 | NoMore |
| 45 | 15829 | 800 | 0.494 | 71 | 0.357 | 5400 | NoMore |
| 46 | 15401 | 787 | 0.509 | 47 | 0.323 | 4700 | NoMore |
| 47 | 15469 | 956 | 0.589 | 124 | 0.497 | 8700 | NoMore |
| 48 | 15517 | 877 | 0.593 | 81 | 0.392 | 11300 | NoMore |
| 49 | 15720 | 917 | 0.529 | 110 | 0.301 | 6900 | NoMore |
| 50 | 17307 | 976 | 0.599 | 133 | 0.621 | 12700 | NoMore |
| 51 | 18105 | 918 | 0.508 | 130 | 0.449 | 8600 | NoMore |
| 52 | 14828 | 864 | 0.581 | 95 | 0.435 | 9200 | NoMore |
| 53 | 16715 | 1059 | 0.634 | 117 | 0.521 | 9400 | NoMore |
| 54 | 14261 | 960 | 0.578 | 136 | 0.53 | 13800 | NoMore |
| 55 | 16264 | 905 | 0.668 | 81 | 0.532 | 15700 | NoMore |
| 56 | 14026 | 995 | 0.636 | 61 | 0.375 | 7600 | NoMore |
| 57 | 16160 | 840 | 0.626 | 48 | 0.321 | 4400 | NoMore |
| 58 | 15439 | 1035 | 0.63 | 114 | 0.474 | 12800 | NoMore |
| 59 | 10810 | 929 | 0.657 | 56 | 0.538 | 9400 | NoMore |
| 60 | 14612 | 824 | 0.498 | 112 | 0.461 | 8000 | NoMore |
| 61 | 12888 | 1112 | 0.619 | 78 | 0.684 | 9900 | NoMore |
| 62 | 11957 | 1108 | 0.631 | 148 | 0.542 | 13600 | NoMore |
| 63 | 12154 | 952 | 0.684 | 124 | 0.405 | 7700 | NoMore |
| 64 | 10946 | 809 | 0.803 | 34 | 0.52 | 16100 | NoMore |
| 65 | 11891 | 892 | 0.606 | 96 | 0.439 | 7900 | NoMore |
| 66 | 13922 | 955 | 0.686 | 123 | 0.448 | 12300 | NoMore |
| 67 | 14520 | 912 | 0.601 | 127 | 0.35 | 9400 | NoMore |
| 68 | 17968 | 864 | 0.665 | 97 | 0.294 | 8100 | NoMore |
| 69 | 10916 | 987 | 0.675 | 75 | 0.582 | 8600 | NoMore |
| 70 | 15363 | 818 | 0.534 | 87 | 0.231 | 6300 | NoMore |
| 71 | 18338 | 841 | 0.507 | 127 | 0.248 | 7600 | NoMore |
| 72 | 15147 | 874 | 0.645 | 132 | 0.379 | 13900 | NoMore |
| 73 | 18030 | 673 | 0.441 | 117 | 0.257 | 6700 | NoMore |
| 74 | 16704 | 1080 | 0.544 | 131 | 0.601 | 13500 | NoMore |
| 75 | 14999 | 829 | 0.541 | 72 | 0.333 | 6300 | NoMore |
| 76 | 14457 | 938 | 0.512 | 92 | 0.442 | 9400 | NoMore |
| 77 | 12602 | 981 | 0.586 | 91 | 0.596 | 13100 | NoMore |
| 78 | 16346 | 988 | 0.602 | 133 | 0.586 | 12300 | Still |
| 79 | 21555 | 1213 | 0.717 | 175 | 0.601 | 13300 | Still |
| 80 | 24741 | 936 | 0.681 | 193 | 0.601 | 10600 | Still |
| 81 | 17173 | 1073 | 0.648 | 125 | 0.634 | 10800 | Still |
| 82 | 19029 | 1067 | 0.72 | 148 | 0.611 | 14400 | Still |
| 83 | 19378 | 999 | 0.617 | 142 | 0.677 | 13700 | Still |
| 84 | 20707 | 974 | 0.684 | 93 | 0.444 | 11000 | Still |
| 85 | 24944 | 769 | 0.587 | 173 | 0.518 | 8200 | Still |
| 86 | 20224 | 932 | 0.555 | 186 | 0.344 | 4400 | Still |
| 87 | 18126 | 983 | 0.552 | 150 | 0.633 | 7700 | Still |
| 88 | 15750 | 854 | 0.575 | 153 | 0.593 | 15400 | Still |
| 89 | 19610 | 1060 | 0.595 | 189 | 0.692 | 13800 | Still |
| 90 | 16076 | 995 | 0.595 | 130 | 0.491 | 9200 | Still |
| 91 | 21176 | 1114 | 0.594 | 214 | 0.546 | 15200 | Still |
| 92 | 20584 | 888 | 0.552 | 104 | 0.579 | 5900 | Still |
| 93 | 19160 | 842 | 0.58 | 133 | 0.415 | 7500 | Still |
| 94 | 18687 | 835 | 0.59 | 112 | 0.558 | 7900 | Still |
| 95 | 16373 | 1016 | 0.568 | 181 | 0.503 | 9100 | Still |
| 96 | 18616 | 899 | 0.552 | 136 | 0.367 | 10100 | Still |
| 97 | 18853 | 938 | 0.643 | 195 | 0.605 | 11800 | Still |
| 98 | 20091 | 1000 | 0.556 | 187 | 0.53 | 11000 | Still |
| 99 | 20415 | 948 | 0.632 | 119 | 0.435 | 8100 | Still |
| 100 | 22010 | 846 | 0.51 | 162 | 0.424 | 6900 | Still |
| 101 | 19816 | 993 | 0.471 | 143 | 0.348 | 9600 | Still |
| 102 | 15641 | 1003 | 0.657 | 192 | 0.596 | 16000 | Still |
| 103 | 17743 | 947 | 0.621 | 133 | 0.509 | 4600 | Still |
| 104 | 21085 | 981 | 0.577 | 132 | 0.557 | 7200 | Still |
| 105 | 19378 | 868 | 0.545 | 109 | 0.523 | 4400 | Still |
| 106 | 24108 | 789 | 0.512 | 164 | 0.326 | 2800 | Still |
| 107 | 20918 | 885 | 0.535 | 134 | 0.427 | 5400 | Still |
| 108 | 20353 | 973 | 0.564 | 153 | 0.604 | 12000 | Still |
| 109 | 19182 | 955 | 0.606 | 171 | 0.468 | 6600 | Still |
| 110 | 18713 | 955 | 0.617 | 156 | 0.613 | 7400 | Still |
| 111 | 15143 | 924 | 0.544 | 134 | 0.457 | 9000 | Still |
| 112 | 18436 | 989 | 0.568 | 169 | 0.338 | 8700 | Still |
| 113 | 18688 | 1028 | 0.659 | 146 | 0.588 | 12100 | Still |
| 114 | 19954 | 779 | 0.5 | 134 | 0.42 | 12400 | Still |
| 115 | 20276 | 1048 | 0.65 | 165 | 0.461 | 7500 | Still |
| 116 | 19121 | 912 | 0.612 | 167 | 0.595 | 11500 | Still |
| 117 | 20965 | 1016 | 0.571 | 161 | 0.57 | 6300 | Still |
| 118 | 23793 | 800 | 0.63 | 162 | 0.519 | 10800 | Still |
| 119 | 19238 | 892 | 0.639 | 180 | 0.528 | 14000 | Still |
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
