Question: Consider a G/G/2 queuing system in which customers take service from Server 1 when both servers are available. Inter-arrival times: 0.2, 0.05, 0.15, 0.1, 0.02,
Consider a G/G/2 queuing system in which customers take service from Server 1 when both servers are available.
Inter-arrival times: 0.2, 0.05, 0.15, 0.1, 0.02, 0.3, 0.01, 0.5, 0.3, 0.5, 0.1, 0.01, 0.6, 0.15
Service times of Server 1: 0.03, 0.13, 0.2, 0.7, 0.62, 0.45, 0.2, 0.8, 0.15, 0.45, 0.05, 0.3, 0.8
Service times of Server 2: 0.1, 0.4, 0.25, 0.7, 0.4, 0.5, 0.18, 0.01, 0.4, 0.1, 0.2, 0.62, 0.13
Using the inter-arrival and service times given above (in minutes) in the given order, create a record of hand simulation using the event-scheduling algorithm until time TE = 3 minutes and compute the below stated performance measures. Assume that the first arrival occurs at time t = 0.
a.Average number of jobs in the system _________________________________
b.Average number of jobs in the queue _________________________________
c.Utilization of Server 1 ________________________________
d.Utilization of Server 2 _________________________________
e.Average time in the system _________________________________
f.Average waiting time in the queue _________________________________
g.Maximum number of jobs in the queue _______________________________
h.Maximum waiting time in the queue ________________________________
i.Total number of jobs that arrived at the system _________________________________
j.Total number of jobs that started service ____________________________
k.Total number of jobs completed service -------------------------------
answer these by creating the tablue

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \multicolumn{3}{|c|}{ Just Finished Event } & \multicolumn{2}{|c|}{ Variables } & \multicolumn{3}{|c|}{ Arrival Times } & \multicolumn{10}{|c|}{ Statistical Accumulators } & \multicolumn{3}{|c|}{ Event Calendar } \\ \hline \multirow{2}{*}{EntityNo} & \multirow{2}{*}{Time(t)} & \multirow{2}{*}{EventType} & \multirow{2}{*}{Q(t)} & \multirow{2}{*}{B(t)} & \multirow{2}{*}{InQueue()} & \multicolumn{2}{|c|}{ In Service } & \multirow{2}{*}{P} & \multirow{2}{*}{N} & \multirow{2}{*}{WQ} & \multirow{2}{*}{WQ} & \multirow{2}{*}{TS} & \multirow{2}{*}{ TS* } & \multirow{2}{*}{ LQ } & \multirow{2}{*}{Q} & \multirow{2}{*}{B1} & \multirow{2}{*}{B2} & \multirow{2}{*}{EntityNo} & \multirow{2}{*}{ Time } & \multirow{2}{*}{ Type } \\ \hline & & & & & & S1 & S2 & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & 0 & arrival \\ \hline 1 & 0 & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & & & \\ \hline \end{tabular}
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
