Question: Consider a linear regression model y = beta_{0} + beta_{1}*x with N data points D = {x_{i}, y_{i}} i = 1, 2, 3 ,...,N Show
Consider a linear regression model
y = beta_{0} + beta_{1}*x
with N data points D = \{x_{i}, y_{i}\} i = 1, 2, 3 ,...,N
Show that the unbiased estimate of the model parameters are given by using python
beta 0 = ( sum i = 1 to N x i )( sum i=1 ^ N x i y i )-( sum i=1 ^ N x i ^ 2 ) sum i=1 ^ N y i N sum i=1 ^ N x i ^ 2 -( sum i=1 ^ N x i )^ 2
beta 1 = ( sum i = 1 to N x i )( sum i=1 ^ N y i )-N( sum i=1 ^ N x i y i ) ( sum i=1 ^ N x i )^ 2 -N( sum i=1 ^ N x i ^ 2 )
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
