Question: Consider equiprobable binary orthogonal signaling with signals s 1 = ( E 2 , 0 ) and s 2 = ( 0 , E 2

Consider equiprobable binary orthogonal signaling with signals s1=(E2,0) and s2=(0,E2).
When these signals are sent over the additive white Gaussian noise (AWGN) channel, the received
signal vector can be expressed as
r=(r1,r2)=sm+n, for m=1,2
where n=(n1,n2) is the noise vector whose components are independent and identically dis-
tributed Gaussian random variables with mean zero and variance N02.
The optimal detection rule in this setting is formulated as
f(r|s1)s2s1f(r|s2)
where f(r|sm)=1N0e-(r1-sm)2+(r2-sm2)2N0 and sm=(sm1,sm2). The above detection rule indicates
that s1 is detected if f(r|s1)>f(r|s2). Otherwise, s2 is detected.
a) Show that the above detection rule can be simplified to
r1s2s1r2.
b) Assume that s1=(E2,0) was sent. Show that the conditional error probability is given by
Pr(e|s1 sent )=Q(EN02)
where Q-function is defined as Q(a)=Pr(x>a) where x is a Gaussian random variable with
mean zero and variance 1.
 Consider equiprobable binary orthogonal signaling with signals s1=(E2,0) and s2=(0,E2). When

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!