Question: Consider the following formula. sin(x) dy = _ sin (x) cos(x) n- 1 + sin? - 2(x) dx n Use the formula to find the

 Consider the following formula. sin"(x) dy = _ sin" (x) cos(x)n- 1 + sin? - 2(x) dx n Use the formula tofind the integral. (Remember the constant of integration.) sin (x) dx\f1 )

Consider the following formula. sin"(x) dy = _ sin" (x) cos(x) n- 1 + sin? - 2(x) dx n Use the formula to find the integral. (Remember the constant of integration.) sin (x) dx\f1 ) [ sin ( x ) . dx here, n= 5 5 - 1 : sinuajax = - sin ( x ). Cosix ) 5 - 1 5 - 2 + 5 sin ( 2 ) do 5 1 - sin (x ) cos (2) + 5 Sin la ). dx 5 3 - 2 - sin (x). cos ( x ) - sin (x ) . cost 3 . Sin ( x ). dx + vilI + 3 5 3 - sin (x). cosix) - sinih ) . costa ) + 2 x 1 6 sinlay da + 5 3 4 , - Sin '(2). Cos(x ) - 4 sing() . cosla ) thx2 ( - cosx ) + C 5 15 - Sin (*). cos (x) _ 4 sin?(x). cos( ) -& cosla)+ ( 5 15 sin ( x ) dx = - sin (x) cos(x ) - 4 sin2(x). cos (x) _8 cos(x ) + C 5 15 15

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!