Question: Consider the following function: f(x) = x^2 2xe^(-x) + e^(2x) a. Perform five interactions of the Newton method (initial guess = 0) by hand to
Consider the following function: f(x) = x^2 2xe^(-x) + e^(2x)
a. Perform five interactions of the Newton method (initial guess = 0) by hand to estimate the functions root.
b. Use the Matlab file provided in class (i.e. bisect.m) to solve the functions root using the Bisection method between 0 and 1 within a 0.00002 error. Show as many significant digits in your output as possible.
Bisect.m matlab code
function bisect(f,a,b,tol,n)
% Bisection method for solving the nonlinear
%equation f(x)=0.
a0=a;
b0=b;
iter=0;
u=feval(f,a);
v=feval(f,b);
c=(a+b)*0.5;
err=abs(b-a)*0.5;
disp('_____________________________________________________________________')
disp(' iter a b c f(c) |b-a|/2 ')
disp('_____________________________________________________________________')
fprintf(' ')
if (u*v<=0)
while (err>tol)&(iter<=n)
w=feval(f,c);
fprintf('%2.0f %10.4f %10.4f %12.6f %10.6f %10.6f ',iter,a,b,c,w,err)
if (w*u<0)
b=c;v=w;
end
if (w*u>0)
a=c;u=w;
end
iter=iter+1;
c=(a+b)*0.5;
err=abs(b-a)*0.5;
end
if (iter>n)
disp(' Method failed to converge')
end
else
disp(' The method cannot be applied f(a)f(b)>0')
end
% Plot f(x) in the interval [a,b].
fplot(f, [a0 b0])
xlabel('x');ylabel('f(x)');
grid
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
