Question: Deep learning Step by step with explanation please I don't want the code only, I need the full answer for it. use the values in

3. For the input space x the following 4x5 weight matrix (w) is given. Calculate the Softmax output. Bias b = [0,1; -0,2; 0,3; 0). x should be defined by you from numbers bw 20-50, where some can be negative values i.e. (26, -30, 48, -10, 35) (Do not use this examplary x values!!!) -0,05 0,01 0,03 0,1 0,2 0,22 0,03 0,2 0,02 -0,3 -0,26 0,02 0,01 0.02 0,16 0,48 0,8 -0,35 0,18 0,01 Turkcell LTE 20:12 %100 softmax can be easily found by below code, def softmax(x): return np.exp(x) / np.sum(np.exp(x), axis=0) x = np.random.rand(4,5) print (softmax(x)) here the sum of all exponents are divided from each X
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
