Question: A cut in a network is a pair (X, Y) of subsets of the verter set V such that XUY = V, s e

A cut in a network is a pair (X, Y) of subsets 

< 15 Figure 2: A cut in a network (b) Use the above equality to prove that the capacity c(X,Y) of the cut is an upper bound t  

A cut in a network is a pair (X, Y) of subsets of the verter set V such that XUY = V, s e X, t Y. The capacity c(X, Y) of the cut is the sum of the capacities of the edges directed from X to Y (i.e. edges e = (r, y) with a E X and y E Y ). Figure 2 shows a cut in a network. Let f be a flow in a network and let V = XUY be a cut. The strength of the flow is defined as the total amount of flow leaving the source \S| =s, y). %3D VEV (a) Use the conservation laws to prove that =EE(,) - f(y,) rEX LyeV %3D 15 Figure 2: A cut in a network (b) Use the above equality to prove that the capacity c(X, Y) of the cut is an upper bound to the strength of the flow.

Step by Step Solution

3.44 Rating (141 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

From the conservation laws we get Vv E V s t EIsv y fy v 0 yEV W I6 f s fe y ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Algorithms Questions!