Question: ( e ) ( G _ { 1 } ) is not a connected graph. If you wanted to turn ( G

(e)\( G_{1}\) is not a connected graph. If you wanted to turn \( G_{1}\) into a connected graph by adding edges, how many would you need to add? Which edges would you add?
Note: There are many possible answers to this question. If you say you only need 3 edges, then your answer should consist of just 3 edges. If you say you only need 1 edge, your answer should consist of just 1 edge.
(f) A connected component in a graph is a maximal set of vertices that are all connected to each other. (Here, "maximal" means that if you add any more vertices, it won't be connected anymore.)
What are the vertices in the connected component that contains 4?
(g) How many connected components does \( G_{1}\) have?
(h) If a graph is connected, what does that tell you about how many connected components it has?
(i) How many edges are there in the longest possible path in \( G_{1}\)?
(j) How many edges are there in the longest possible trail in \( G_{1}\)?
(k) How many edges are there in the longest possible walk in \( G_{1}\)?
(l) How many edges are there in the longest possible cycle in \( G_{1}\)?
( e ) \ ( G _ { 1 } \ ) is not a connected graph.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!