Question: Exercise 7.3.1. Consider the function[ h(x)=begin{cases} 1 & textit{ for }0le x <1 2 & textit{ for } x =1 end{cases} ]over the interval $[0,1]$.(a)
Exercise 7.3.1. Consider the function\[ h(x)=\begin{cases} 1 & \textit{ for }0\le x <1\\ 2 & \textit{ for } x =1\\ \end{cases} \]over the interval $[0,1]$.\\(a) Show that $L(f,P)=1$ for every partition $P$ of $[0,1]$.\\(b) Construct a partition $P$ for which $U(f,P)<1+1/10$.\\(c) Given $\epsilon >0$, construct a partition $P$ for which $U(f,P)<1+\epsilon$.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
