Question: Fig 1-2 Data Table to vs y Data Table t(s) t ? ( $ 2 ) At(s) At? ( s ? ) Y(M) t^2 vs






Fig 1-2 Data Table to vs y Data Table t(s) t ? ( $ 2 ) At(s) At? ( s ? ) Y(M) t^2 vs y Y(M) t (S) 25 0.00 0.000 20 0.00 0.00 20 y =-4.8553x + 19.639 0.69 0.476 18 0.10 0.14 0.48 18 1 20 R- = 0.9896 0.80 1.640 16 0.10 .16 0.64 16 1.00 1.000 14 0.10 ).20 1.00 14 15 1.30 1.690 12 0.10 0.26 1.69 12 10 1.43 2.041 10 0.10 0.29 2.04 10 1.50 2.250 0.10 0.30 2.25 1.70 3.890 0.10 0.34 2.89 ON a CO 1.85 3.423 0.10 0.37 3.42 2.05 4.203 0.10 0.41 4.20 -1.00 0.00 1.00 2.00 3.00 4.00- 5.00 -5 t2 t vs y Data Table t 0.00 20 0.69 18 t vs y 0.80 16 25 1.00 14 1.30 12 1 20 1.43 10 1.50 15 1.70 ON a CO y(m) 10 1.85 2.05 -0.50 0.00 0.50 1.00 1.50 2.08 2.50 -5 t(s)+2 vs. y y vs. t t(s t? ($2) y (m ) At ( s ) A (t ? ) ( $ 2 ) 25 5.000 0.00 0.000 20 0.10 0.00 (a (b) y = -0.2038x + 4.0215 R = 0.9896 0.69 0.476 18 0.10 0.14 20 0 4,000 0.80 0.640 16 0.10 0.16 1.00 1.000 14 0.10 0.20 15 3.000 1.30 1.690 12 0.10 0.26 10 2.000 1.43 2.041 10 0.10 0.29 1.50 2.250 8 0.10 0.30 5 1.000 1.70 2.890 6 0.10 0.34 1.85 3.423 2 0.10 0.37 0.000 2.05 4.203 0 0.10 0.41 0.00 0.50 1.00 1.50 2.00 2.50 5 10 15 20 25 t (5) y(m) Fig. 1-2 Data table and graphs for an object dropped from an initial height y. (a) plot of y vs. t shows that y is not linear as a function of t. (b) Plot of t2 vs. y shows a linear relationship.Experimental Procedure Task 1: Reproduce plots in Fig 1-2 (a) and (b) (a) Use Excel to reproduce plot in Fig 1-2 (a) and (b). Be sure to calculate the columns for t and S (t ) not just entered as numbers. (b) On your graphs show the error bars. (c) Use the Trendline tool to fit the data, show the fitting equations and the R2 values. (d) Reproduce the results of the LINEST function for the data
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
