Question: For IEEE double precision floating point arithmetic, a unit roundoff is approximately 2.2*10^-6. Suppose that for small x, the relative error in the computed value
For IEEE double precision floating point arithmetic, a unit roundoff is approximately 2.2*10^-6.
Suppose that for small x, the relative error in the computed value of sin x is approximately unit roundoff. then what is the relative error in x-sinx? For what value of x do we expect the relative error in x-sinx to reach 100%? [Note: x-sinx is approximately equal to x^3/6 for small x]
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
