Question: For the following Linear programming model Max= 5x+10y+8z s.t. 3x+5y + 2z 60 (Machine Hour) 4x+4y + 4z 72 (Labour Hour) 2x+4y+5z
For the following Linear programming model Max= 5x+10y+8z s.t. 3x+5y + 2z ≤ 60 (Machine Hour) 4x+4y + 4z ≤ 72 (Labour Hour) 2x+4y+5z ≤ 100 (Assembly line constraint) X, Y, Z ≥ 0
Analyze the following lingo output
Variable | Value | Reduced Cost |
X | 0.000000 | 3.666667 |
Y | 8.000000 | 0.000000 |
Z | 10.00000 | 0.000000 |
Row Slack or Surplus Dual Price
1 | 160.0000 | 1.000000 |
2 | 0.000000 | 0.6666667 |
3 | 0.000000 | 1.666667 |
4 | 18.00000 | 0.000000 |
Objective Coefficient Ranges:
Variable | Current Coefficient | Allowable Increase | Allowable Decrease |
X | 5.000000 | 3.666667 | INFINITY |
Y | 10.00000 | 10.00000 | 2.000000 |
Z | 8.000000 | 2.000000 | 4.000000 |
Righthand Side Ranges:
Row | Current RHS | Allowable Increase | Allowable Decrease |
2 | 60.00000 | 30.00000 | 24.00000 |
3 | 72.00000 | 12.70588 | 24.00000 |
4 | 100.0000 | INFINITY | 18.00000 |
Step by Step Solution
3.40 Rating (156 Votes )
There are 3 Steps involved in it
From the output we can see that the value of x is 0 the value of y is 8 and the value of z is 10 The ... View full answer
Get step-by-step solutions from verified subject matter experts
