Question: GaussQuad function: function I = GaussQuad(f,a,b,n) % GaussQuad: gauss quadrature integration % I=GaussQuad(f,a,b,n) % Input: % f = name of function to be integrated %

GaussQuad function: function I = GaussQuad(f,a,b,n) % GaussQuad: gauss quadrature integration %GaussQuad function:

function I = GaussQuad(f,a,b,n)

% GaussQuad: gauss quadrature integration

% I=GaussQuad(f,a,b,n)

% Input:

% f = name of function to be integrated

% a, b = integration limits

% n = number of quad points (default=8)

% Other Variables:

% xd = Gauss points to evaluate

% w = Weight factors

% x = True position of evaluation

% Output:

% I = Integral estimate

if nargin

if ~(b>a), error('Upper bound must be greater than lower'), end

if nargin

[xd,w]=GLTable(n);

I = 0;

c1 = (b+a)/2;

c2 = (b-a)/2;

for i = 1:n

x = c1 + c2 * xd(i);

I = I + f(x) * w(i);

end

I = I * c2;

end

function [x,w] = GLTable(n)

% GLTable Nodes and weights for Gauss-Legendre quadrature of order n

%

% Synopsis: [x,w] = GLTable(n)

%

% Input: n = number of nodes in quadrature rule, maximum: n = 8

%

% Output: x = vector of nodes

% w = vector of weights

% Numerical values from "Handbook of Mathematical Functions",

% Abramowitz and Stegun, eds., 1965 Dover (reprint), Table 25.4, p. 916

nn = fix(n); % Make sure number of nodes is an integer

x = zeros(nn,1); w = x; % Preallocate x and w vectors

switch nn

case 1

x = 0; w = 2;

case 2

x(1) = -1/sqrt(3); x(2) = -x(1);

w(1) = 1; w(2) = w(1);

case 3

x(1) = -sqrt(3/5); x(2) = 0; x(3) = -x(1);

w(1) = 5/9; w(2) = 8/9; w(3) = w(1);

case 4

x(1) = -0.861136311594053; x(4) = -x(1);

x(2) = -0.339981043584856; x(3) = -x(2);

w(1) = 0.347854845137454; w(4) = w(1);

w(2) = 0.652145154862546; w(3) = w(2);

case 5

x(1) = -0.906179845938664; x(5) = -x(1);

x(2) = -0.538469310105683; x(4) = -x(2);

x(3) = 0;

w(1) = 0.236926885056189; w(5) = w(1);

w(2) = 0.478628670499366; w(4) = w(2);

w(3) = 0.568888888888889;

case 6

x(1) = -0.932469514203152; x(6) = -x(1);

x(2) = -0.661209386466265; x(5) = -x(2);

x(3) = -0.238619186083197; x(4) = -x(3);

w(1) = 0.171324492379170; w(6) = w(1);

w(2) = 0.360761573048139; w(5) = w(2);

w(3) = 0.467913934572691; w(4) = w(3);

case 7

x(1) = -0.949107912342759; x(7) = -x(1);

x(2) = -0.741531185599394; x(6) = -x(2);

x(3) = -0.405845151377397; x(5) = -x(3);

x(4) = 0;

w(1) = 0.129484966168870; w(7) = w(1);

w(2) = 0.279705391489277; w(6) = w(2);

w(3) = 0.381830050505119; w(5) = w(3);

w(4) = 0.417959183673469;

case 8

x(1) = -0.960289856497536; x(8) = -x(1);

x(2) = -0.796666477413627; x(7) = -x(2);

x(3) = -0.525532409916329; x(6) = -x(3);

x(4) = -0.183434642495650; x(5) = -x(4);

w(1) = 0.101228536290376; w(8) = w(1);

w(2) = 0.222381034453374; w(7) = w(2);

w(3) = 0.313706645877887; w(6) = w(3);

w(4) = 0.362683783378362; w(5) = w(4);

otherwise

error(sprintf('Gauss quadrature with %d nodes not supported',nn));

end

end

Jsing Matlab Consider the following function over the interval from 0 to 1 f(x) 10r6+400r5 - 900x675x3 - 200x2 + 25x +0.2 (a) Use the three point Gauss-Legendre method to calculate the integral of the following function. Show all of the steps in the method. Do not use the GaussQuad function or the built-in integration functions. Use an appropriate fprintf statement to print the result with 10 digits after the decimal point. (b) Check your answer using the GaussQuad function. Use an appropriate fprintf statement to print the result with 10 digits after the decimal point. Jsing Matlab Consider the following function over the interval from 0 to 1 f(x) 10r6+400r5 - 900x675x3 - 200x2 + 25x +0.2 (a) Use the three point Gauss-Legendre method to calculate the integral of the following function. Show all of the steps in the method. Do not use the GaussQuad function or the built-in integration functions. Use an appropriate fprintf statement to print the result with 10 digits after the decimal point. (b) Check your answer using the GaussQuad function. Use an appropriate fprintf statement to print the result with 10 digits after the decimal point

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!