Question: How to convert this onehotencoder so it can run on scikitlearn 0.22.1 import numpy as np import pandas as pd from sklearn.metrics import confusion_matrix, accuracy_score

How to convert this onehotencoder so it can run on scikitlearn 0.22.1

import numpy as np
import pandas as pd
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score

dataset = pd.read_csv(‘heart.csv’)
X = dataset.iloc[:,:-1].values
y = dataset.iloc[:,-1].values

from sklearn.preprocessing import OneHotEncoder #cp oneHotEncoder = OneHotEncoder(categorical_features=[2], n_values='auto') oneHotEncoder.fit(X) X = oneHotEncoder.transform(X).toarray() X = X[:, 1:] #restecg oneHotEncoder = OneHotEncoder(categorical_features=[8], n_values='auto') oneHotEncoder.fit(X) X = oneHotEncoder.transform(X).toarray() X = X[:, 1:] #slope oneHotEncoder = OneHotEncoder(categorical_features=[13], n_values='auto') oneHotEncoder.fit(X) X = oneHotEncoder.transform(X).toarray() X = X[:, 1:] #ca oneHotEncoder = OneHotEncoder(categorical_features=[15], n_values='auto') oneHotEncoder.fit(X) X = oneHotEncoder.transform(X).toarray() X = X[:, 1:] #thal oneHotEncoder = OneHotEncoder(categorical_features=[19], n_values='auto') oneHotEncoder.fit(X) X = oneHotEncoder.transform(X).toarray() X = X[:, 1:] from sklearn.preprocessing import StandardScaler scalerX = StandardScaler() X = scalerX.fit_transform(X)

because the new version of sklearn onehotencoder doesnt have categorical_features attribute please help

Step by Step Solution

3.44 Rating (157 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

The issue youre facing is that in recent versions of scikitlearn the OneHotEncoder no longer has a categoricalfeatures parameter Instead you need to u... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!