Question: i need a simulink subsystem step by step about modify 3 equations integro diferential about that circuit please this is a example of the same

i need a simulink subsystem step by step about modify 3 equations integro diferential about that circuit please this is a example of the same circuit except 1 less electrical resistence \subsection{Ecuaciones principales}
\bigskip Dentro de este apartado, encontramos 3 ecuaciones, las cuales son:
Ecuaci\'{o}n de voltaje de entrada, igualdad de voltaje y voltaje de saida.
\begin{eqnarray*}
P_{ao}\left( t\right) &=&L\frac{di_{1}\left( t\right)}{dt}+R_{1}i_{1}\left(
t\right)+\frac{1}{C_{1}}\int \left[ i_{1}\left( t\right)-i_{2}\left(
t\right)\right] dt \\
\frac{1}{C_{1}}\int \left[ i_{1}\left( t\right)-i_{2}\left( t\right)\right]
dt &=&R_{2}i_{2}\left( t\right)+\frac{1}{C_{2}}\int i_{2}\left( t\right) dt
\\
P_{p}\left( t\right) &=&\frac{1}{C_{2}}\int i_{2}\left( t\right) dt
\end{eqnarray*}
\subsection{Ecuaciones integrodiferenciales}
\bigskip Despejamos $i_{1}$
\begin{eqnarray*}
P_{ao}\left( t\right) &=&L\frac{di_{1}\left( t\right)}{dt}+R_{1}i_{1}\left(
t\right)+\frac{1}{C_{1}}\int \left[ i_{1}\left( t\right)-i_{2}\left(
t\right)\right] dt \\
R_{1}i_{1}\left( t\right) &=&V_{e}\left( t\right)-L\frac{di_{1}\left(
t\right)}{dt}-\frac{1}{C_{1}}\int \left[ i_{1}\left( t\right)-i_{2}\left(
t\right)\right] dt \\
i_{1}\left( t\right) &=&\left[ P_{ao}\left( t\right)-L\frac{di_{1}\left(
t\right)}{dt}-\frac{1}{C_{1}}\int \left[ i_{1}\left( t\right)-i_{2}\left(
t\right)\right] dt\right]\frac{1}{R_{1}}
\end{eqnarray*}
\bigskip \bigskip Despejamos $i_{2}$
\begin{eqnarray*}
\frac{1}{C_{1}}\int \left[ i_{1}\left( t\right)-i_{2}\left( t\right)\right]
dt &=&R_{2}i_{2}\left( t\right)+\frac{1}{C_{2}}\int i_{2}\left( t\right) dt
\\
R_{2}i_{2}\left( t\right) &=&\frac{1}{C_{1}}\int \left[ i_{1}\left( t\right)
-i_{2}\left( t\right)\right] dt-\frac{1}{C_{2}}\int i_{2}\left( t\right) dt
\\
i_{2}\left( t\right) &=&\left[\frac{1}{C_{1}}\int \left[ i_{1}\left(
t\right)-i_{2}\left( t\right)\right] dt-\frac{1}{C_{2}}\int i_{2}\left(
t\right) dt\right]\frac{1}{R_{2}}
\end{eqnarray*}
\bigskip
\begin{equation*}
P_{p}\left( t\right)=\frac{1}{C_{2}}\int i_{2}\left( t\right) dt
\end{equation*}
\subsection{Transformada de Laplace}
\bigskip
\begin{eqnarray*}
P_{ao}\left( s\right) &=&LsI_{1}\left( s\right)+R_{1}I_{1}\left( s\right)+%
\frac{I_{1}\left( s\right)-I_{2}\left( s\right)}{C_{1}s}\\
\frac{1}{C_{1}s}\left[ I_{1}\left( s\right)-I_{2}\left( s\right)\right]
&=&\left( R_{2}+\frac{1}{C_{2}s}\right) I_{2}\left( s\right)\\
P_{p}\left( s\right) &=&\frac{I_{2}\left( s\right)}{C_{2}s}
\end{eqnarray*}
i need a simulink subsystem step by step about

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Electrical Engineering Questions!