Question: I need help on this question Application of Difference Quotient In the function P(t) = 309.3 . 1.005, P represents the population in millions and

I need help on this question

I need help on this question Application of Difference Quotient In the

Application of Difference Quotient In the function P(t) = 309.3 . 1.005, P represents the population in millions and t represents the number of years since 2010. Find the population in 2017 and the rate at which the population is growing in 2017. Use h = 0.001 to estimate the derivative with the difference quotient. The population in 2017 is million. The rate at which the population is growing in 2017 is million people per year. ( Keep ALL decimal places on both parts. ) Hint: The population in 2017 is P(7). The rate of change in 2017 is P'(7)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!