Question: If L:mathbb{R}^2to mathbb{R}^2 is a linear transformation such that L(mathbf{e}_1)= begin{bmatrix} 2 -7 end{bmatrix} and L(mathbf{e}_2)= begin{bmatrix} 3 4 end{bmatrix}, then the matrix representation of
If L:\mathbb{R}^2\to \mathbb{R}^2 is a linear transformation such that L(\mathbf{e}_1)= \begin{bmatrix} 2\\ -7 \end{bmatrix} and L(\mathbf{e}_2)= \begin{bmatrix} 3\\ 4 \end{bmatrix}, then the matrix representation of L with respect to the standard basis in \mathbb{R}^2 is A = \begin{bmatrix} 2 & 3 \\ -7 & 4 \end{bmatrix} True or false
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
