Question: Implement Polynomial Fitting with Linear Regression using linear- regression.train.csv file, and predict linear-regression.test.csv. Implement plot in your python code to visualize your prediction. linear-regression.train.csv: 1.773925855
Implement Polynomial Fitting with Linear Regression using linear- regression.train.csv file, and predict linear-regression.test.csv.
Implement plot in your python code to visualize your prediction.
linear-regression.train.csv:
| 1.773925855 | -1.1241829 |
| 5.846599049 | -1.211766015 |
| 4.324710329 | -0.362799509 |
| 2.306738109 | -2.085373219 |
| 4.980138035 | -1.356402703 |
| 4.189139578 | -0.201226385 |
| 9.948129151 | 1.650632079 |
| 3.464553522 | -0.459846328 |
| 9.650937055 | 1.280288454 |
| 7.964266356 | 0.425870705 |
| 8.791549734 | 0.154494353 |
| 2.781812719 | -1.491048335 |
| 8.786985098 | 0.065379327 |
| 9.995044158 | 2.072900179 |
| 7.561621174 | 1.235028528 |
| 6.20751568 | -0.201740154 |
| 7.77758623 | 0.672486166 |
| 5.560015349 | -1.598362134 |
| 2.729708636 | -1.493080715 |
| 6.444734794 | 0.089616357 |
| 9.379024356 | 0.666459393 |
| 5.289913593 | -1.59196931 |
| 6.659920503 | 0.923695446 |
| 7.214656826 | 1.470738136 |
| 0.777685771 | 0.722658092 |
| 8.189407987 | -0.005230945 |
| 3.678383464 | -0.28737845 |
| 9.409491169 | 0.983973952 |
| 5.639642014 | -1.175241461 |
| 8.772327986 | -0.134093896 |
| 0.503104428 | 0.984091738 |
| 6.280712639 | -0.236313006 |
| 3.486529142 | -0.428986948 |
| 6.542233345 | 0.46346003 |
| 1.466141099 | -0.587323374 |
| 8.592115362 | 0.026472755 |
| 1.323047133 | -0.203598531 |
| 6.07084029 | -0.719681856 |
| 1.225871594 | 0.039255311 |
| 7.418959098 | 1.167366137 |
| 7.291607261 | 1.187485105 |
| 1.460490297 | -0.237748551 |
| 4.828945341 | -0.800765466 |
| 1.72288168 | -0.952066276 |
| 1.421409598 | -0.410055062 |
| 7.254440382 | 1.033271567 |
| 3.457766545 | -0.535208995 |
| 4.710780744 | -0.993463771 |
| 4.90245962 | -0.951548635 |
| 0.9014643 | 2.571538166 |
| 5.555819882 | 0.614641421 |
| 0.357165648 | 2.55727165 |
| 6.969250495 | 3.366073961 |
| 0.896778499 | 2.56947461 |
| linear-regressin.test.csv
|
| 8.574165076 | -0.023167229 |
| 0.672294564 | 0.93180894 |
| 4.343045048 | -0.049302582 |
| 6.250690412 | -0.009083526 |
| 1.178300986 | 0.398411218 |
| 8.545821877 | -0.389339878 |
| 7.343019054 | 1.012991495 |
| 6.030276285 | -0.852228095 |
| 0.890083545 | 0.507296321 |
| 1.756977643 | -0.989117572 |
| 1.769820781 | -1.210939071 |
| 9.305704509 | 0.671301695 |
| 6.717533891 | 0.833394528 |
| 9.70344273 | 1.438538944 |
| 9.770580591 | 1.582831132 |
| 2.527777709 | -1.80703827 |
| 7.377929562 | 1.262796591 |
| 0.298353131 | 0.58997663 |
| 2.429061758 | -2.075709586 |
| 7.100283913 | 1.171879108 |
hints:
http://scikit-learn.org/stable/auto_examples/
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
